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Abstract— Pushing objects to desired locations is a funda-
mental manipulation skill in robotics, yet it remains a challeng-
ing task due to the complex contact dynamics and the need for
precise motion planning. In this paper, we compare Diffusion
Policy and Model-Based approaches for effective block pushing
strategies. First, we implement a vanilla model-based planner
which plans and executes a single push to the target; if
unsuccessful, it resets and replans. Then, we train a vision-based
Diffusion Policy, that learns an implicit control distribution
from the demonstrations collected by the previous model-based
planner with human intervention. Our experiments evaluate
the success rate, and robustness of both methods under diverse
task conditions. The results show that the Diffusion Policy excels
in handling uncertainty and generalizing to unseen scenarios,
while the model-based approach is more brittle and may require
multiple retries. Finally, we validate our findings with real-
world robotic experiments. Our real-world evaluation showed
that Diffusion Policy achieved a 25% success rate compared to
15% for model-based planning, highlighting the advantages of
diffusion policy in terms of both generalizability and efficiency.

I. INTRODUCTION

Reinforcement Learning (RL) and Imitation Learning (IL)
have been widely explored for robotic manipulation tasks,
particularly in block pushing, which serves as a fundamental
testbed for dexterous motion planning and control. This has
been demonstrated across a variety of tasks, including pick-
and-place, grasping, and navigation [1], [2]. Learning-based
approaches enable robots to acquire complex skills without
explicit system identification, making them suitable for tasks
with uncertain dynamics and contact-rich interactions.

Diffusion Policy offers a new paradigm in robot learning,
leveraging the generative capabilities of diffusion models to
learn visuomotor policies from demonstrations. Unlike con-
ventional policy learning methods, Diffusion Policy gener-
ates actions by iteratively refining noise into control signals,
capturing multimodal action distributions and improving
adaptability to diverse scenarios.

In this work, we train a Diffusion Policy using demonstra-
tion data collected from a Model-Based planner with human
intervention (i.e., adjusting pushing angle by human). It turns
out that our trained Diffusion Policy can learn to dynamically
adjust the pushing angle during execution, allowing it to
adapt to object dynamics and environmental variations.

In this report, we aim to systematically compare the
Diffusion Policy with Model-Based Methods in the specific
context of block pushing using a Franka Emika Panda robot
arm. Our main contributions are as follows:

• A Vanilla Model-Based Planner: We design a simple
model-based planner that executes a single push per
trial, serving as both a baseline and a data collection
mechanism for Diffusion Policy.

• Vision-Based Diffusion Policy: We train a Diffusion
Policy that learns an implicit control distribution from
model-based demonstrations, enabling improved gener-
alization in block pushing.

• Evaluation in the Challenging Block Pushing Task:
We compare both methods in real-world experiments,
demonstrating the superior generalizability and effi-
ciency of the Diffusion Policy.

II. RELATED WORK

Policy learning for robotic manipulation has been ex-
tensively studied in both model-based and model-free
paradigms. Model-based methods rely on explicit system
dynamics, where future trajectories are optimized based
on a predefined dynamics model. These approaches have
been widely used in robotic manipulation tasks due to their
interpretability and ability to enforce physical constraints.
However, they struggle in unstructured environments where
accurate models are difficult to obtain.

On the other hand, model-free methods, particularly im-
itation learning (IL) and reinforcement learning (RL), have
gained popularity for robotic control. Behavior Cloning (BC)
[3] directly learns a mapping from observations to actions
using supervised learning, but suffers from compounding
errors due to its inability to correct mistake.

Recent advances in Diffusion Models have introduced
new capabilities in generative modeling, with applications
extending to policy learning. Diffusion Policy [4] formulates
robot control as a denoising diffusion probabilistic model
(DDPM), enabling it to capture multimodal action distribu-
tions and exhibit stable training behavior. Unlike traditional
IL methods, Diffusion Policy refines stochastic noise into
actions using Stochastic Langevin Dynamics, allowing it to



generate smooth and consistent motion sequences. Empirical
results show that Diffusion Policy outperforms traditional BC
and RL methods in high-dimensional manipulation tasks [4].

Moreover, previous research highlights the importance of
data quality in IL. Studies have shown that expert demonstra-
tions significantly improve policy performance, while noisy
or suboptimal data can degrade performance [5]. In the origi-
nal Diffusion Policy work, human operators were required to
practice tasks extensively before recording demonstrations.
Our work builds on this by quantifying the impact of bad
data on policy performance, and evaluating how unpracticed
demonstrations compare with refined expert demonstrations.

This study contributes to the growing body of research
in robotic policy learning by benchmarking Diffusion Policy
against Model-Based Methods and investigating how data
quality affects its effectiveness. Our results will provide
insights into the trade-offs between data-driven and model-
driven approaches in robotic manipulation.

III. PRELIMINARIES

A. Basic Framework of Diffusion Models

Diffusion model is a special case of Variational Autoen-
coder (VAE), whose core idea stems from thermodynamics:
a distribution can be transformed into another through the
continuous addition of noise. In the context of image gen-
eration tasks, this implies that images from the training set
can be progressively perturbed by noise until they conform
to a standard normal distribution. Specifically, it contains two
process: forward process and backward process:

1) Forward Process (Diffusion): The forward process is a
fixed Markov chain that incrementally adds Gaussian noise
to the input data x0 over T timesteps. At each step t, the
noised sample xt is generated as:

xt =
√

αtxt−1 +
√

1−αtε t , ε t ∼ N (0,I) (1)

where αt is a noise schedule parameter, and ε t is isotropic
Gaussian noise. The process transforms the data distribution
q(x0) into a tractable prior q(xT )≈ N (0,I).

2) Reverse Process (Denoising): The reverse process
learns a parameterized model pθ to iteratively denoise sam-
ples. Starting from xT ∼ N (0,I), it approximates the true
posterior q(xt−1|xt) by:

pθ (xt−1|xt) = N (xt−1; µθ (xt , t),Σθ (xt , t)) (2)

Here, µθ and Σθ are neural networks trained to predict the
noise component and covariance at each step. The training
objective minimizes the variational bound on the negative
log-likelihood:

L = Et,x0,ε

[
∥ε − εθ (xt , t)∥2] (3)

where εθ is the prediction of the noise injected at step t.
In robot control scenarios, this process is redefined as

a conditional generation problem: given an observation se-
quence Ot , an action sequence At is generated through K
denoising iterations, mathematically expressed as:

Ak−1
t =

1
αk

(Ak
t −αkεθ (Ak

t ,Ot ,k))+σkz (4)

where εθ is the noise prediction network, αk controls
the denoising step size, and σk determines the intensity of
random perturbations. This iterative optimization mechanism
enables the policy to explore multimodal distributions in the
action space while maintaining action coherence across the
time dimension.

IV. METHODOLOGY

A. Block Pushing Task Description

The block pushing task involves controlling a 7-DoF
Franka Emika Panda robotic arm to push a cubic object to a
designated target position on a planar workspace. The cube
has uniform friction properties between its surfaces and the
workspace, but initial object poses and target locations vary
across trials. The robot observes the environment through
an overhead RGB-D camera, which provides object pose
estimates for policy execution. The task requires the robot to
plan pushing trajectories that account for contact dynamics,
including potential object sliding and rotation during manip-
ulation.

B. Vanilla Model-Based Planner with MoveIt!

In our study, we implement a Vanilla Model-Based Planner
using MoveIt as a baseline for comparison with our diffusion-
based approach. This planner follows a detect-plan-push
strategy, where the robotic arm first detects the wooden
block’s initial position using traditional perception methods,
such as vision-based object detection or predefined markers.
The target position on the plane is predefined, and once both
the start and goal locations are identified, the system plans a
feasible pushing trajectory using MoveIt’s motion planning
framework. The planned motion is executed by the robotic
arm, aiming to push the block toward its goal in a controlled
manner.

The motion planning process is based on inverse kine-
matics and sampling-based algorithms, such as RRT-Connect
or PRM, to generate a collision-free trajectory for the end-
effector. The robot moves to a designated starting position,
aligns with the block, and applies a forward motion to initiate
the push. However, since the planner does not explicitly
model frictional interactions or dynamic effects, there is a
possibility that the push may not succeed in moving the
block precisely to the target. If the block does not reach the
desired position due to slippage, misalignment, or execution
inaccuracies, the system detects the failure and resets. The
robotic arm returns to its home position, re-evaluates the
block’s new pose, and re-plans the pushing trajectory. This
process is repeated iteratively until the block is successfully
moved to the goal.

While this model-based approach provides a structured
and interpretable solution for block pushing, it faces several
limitations. The primary drawback is its limited adaptability
to unmodeled contact dynamics, as the system does not



account for variations in friction, surface properties, or
unexpected disturbances.

C. Diffusion Policy Training

Diffusion Policy is trained as a Denoising Diffusion Prob-
abilistic Model (DDPM), where the objective is to learn a
mapping from noisy actions to clean actions conditioned
on visual and state observations. This formulation allows
the model to express multi-modal action distributions and
leverage the generative modeling capabilities of diffusion
processes for policy learning.

Diffusion models define a forward process where noise is
gradually added to the actions over K timesteps, transforming
them into a Gaussian distribution. The reverse process,
parameterized by a neural network, learns to iteratively
denoise the corrupted actions and recover the original action
distribution:

q(Ak
t |Ak−1

t ) = N (Ak
t ;
√

αkAk−1
t ,(1−αk)I) (5)

where αk is a noise schedule controlling the level of cor-
ruption. The policy is trained to approximate the denoising
function by minimizing the expected squared error between
the predicted noise and the true noise:

Ldiff = EAt ,Ot ,k

[
|εk − εθ(Ot ,At + εk,k)|2

]
(6)

1) Observation Representation: The observation space
consists of both visual and proprioceptive inputs. Both visual
and state embeddings are concatenated and used as condi-
tioning inputs to the denoising network:

• Visual Input: RGB-D images from an Intel RealSense
D415 camera, processed using a ResNet-34 backbone
with frozen parameters. The extracted features are
further encoded with temporal convolution layers to
capture spatiotemporal dependencies.

• State Input: The robot’s proprioceptive state st , includ-
ing joint positions, velocities, and end-effector forces.
This is encoded into a 128-dimensional latent represen-
tation using a multi-layer perceptron (MLP) and further
refined using an LSTM for sequential modeling.

2) Action Representation: The action space for the block
pushing task is formulated as a continuous control problem,
where each action consists of:

At = (xt ,yt ,zt) (7)

where:

• xt ,yt ,zt : Cartesian position of the end-effector,

Actions are iteratively refined through the diffusion de-
noising process, ensuring smooth and feasible motion trajec-
tories for the block-pushing task.

V. EXPERIMENT

A. Simulation Experiment

We develop Mujoco [6] simulation environment to validate
our training pipeline before real-world training and deploy-
ment. We follow the open-sourced code [4] and reproduce
the Block Pushing task with diffusion policy trained on a
Linux machine of Ubuntu 22.04 with Nvidia 4090 GPU. We
validate both state-based and vision-based diffusion policy.

B. Real-world Experiment

1) Hardware Setup: In our real-world experiments, as
shown in Fig. 1, we use two Intel RealSense cameras to
provide RGB-D inputs for the learning-based policy. One
camera is mounted at the front of the workspace, while the
other is attached to the Franka robot arm’s end-effector as
a wrist camera. The Franka arm is teleoperated using end-
effector pose control to perform block-pushing motions and
collect demonstration data for training the Diffusion Policy.
During data collection, we iteratively adjust the pushing
angle of the end-effector until the block is successfully
placed within a black-taped target area. This setup enables a
thorough evaluation of policy performance in both simulated
and real-world environments.

Fig. 1: Franka Panda robot arm with a stick-mounted end-
effector for interaction with a wooden block and a front-
facing RealSense camera for video recording. The black-
taped area indicates the goal position for the block.

n

2) Data Collection: To collect demonstration data for
training the Diffusion Policy, we teleoperate the Franka robot
arm using Cartesian end-effector pose control. Each trajec-
tory consists of time-stamped RGB-D observations from both
the front-facing and wrist-mounted RealSense cameras, along
with the robot’s proprioceptive states and end-effector poses.
The pushing motion is repeated under various initial block
configurations and goal locations to introduce variability and
improve policy generalization.

C. Model-Based Approach Experiment

To benchmark our diffusion policy against a conventional
planner, we evaluated the vanilla model-based method on the
real robot.



Fig. 2: Samples from the demonstration dataset collected
for training the Diffusion Policy. Each frame pair shows
synchronized RGB observations from the front-facing and
wrist-mounted RealSense cameras during a pushing task.

Similar to the hardware setup mentioned above, we used
Franka Emika Panda arm and a front-facing Intel RealSense
D415 RGB-D camera, but removed the camera mounted on
the end-effector. Workspace is a 60 cm×60 cm flat table and
the object is a uniform wooden cube (5 cm edge length).

The procedure is as follows, we:
1) Captured the block’s pose via opencv.
2) Compute a straight-line end-effector path: approach

the block’s center, then push at constant velocity for
a distance to make the block move towards the goal
position.

3) Repeat this procedure, stop until the block enter the
goal position.

4) Marked the trial as a failure if the cube did not reach
the goal after three pushes.

VI. EVALUATION

We evaluate the performance of the trained Diffusion
Policy in a real-world block pushing task using the Franka
Emika Panda robot. Our primary goal is to assess whether
the policy can generalize beyond the limited training set and
workspace configuration, and whether it can reliably push a
wooden block into a designated target zone under variable
conditions.

Each method was evaluated in a real-world block pushing
task using the same tabletop setup. A total of 20 trials
were conducted per method, with randomized initial block
positions and a fixed target region marked on the workspace.
The camera setup remained constant across all experiments.
For fairness, all episodes started with the block placed within
the same workspace bounds, and the robot was reset to a
consistent initial configuration before each trial.

As shown in I, human demonstrations achieved perfect
performance with a 100% success rate and an average
episode duration of 15.6 seconds, serving as the performance

Metric Human Target-Aligned Push Diffusion Policy

IoU 1.00 0.5 0.5
Success Rate (%) 1.00 0.15 0.25
Duration (s) 15.6 22.4 68.3

TABLE I: Evaluation Summary. a) Example of successful
block pushing executions using the trained Diffusion Policy.
Table: IoU measures the overlap between the final block pose
and the target region. Success is defined by an IoU greater
than 0.5. Duration refers to the average episode length in
seconds.

upper bound. The model-based method, which executes a
straight-line push aligned with the target, succeeded in 15%
of trials. In comparison, the Diffusion Policy demonstrated a
higher success rate of 25%, indicating some ability to adapt
to variability in block position. However, its average episode
duration was 68.3 seconds—over three times longer than
human execution—suggesting that the generated trajectories
were less efficient and potentially unstable.

While the Diffusion Policy showed a higher success rate
than the model-based approach, it often exhibited slow,
unstable, or curved motion paths. In successful cases, the
policy was able to adapt to minor variations in block pose,
but many failures involved imprecise pushes that rotated or
nudged the block away from the goal area. These behav-
iors are likely attributed to the limited training data—only
40 demonstrations—and the small, constrained workspace
imposed by Franka’s safety limits. The policy appeared to
lack confident strategies for edge cases and often produced
hesitant movements, possibly due to poor generalization
outside the observed training distribution.

VII. CHALLENGES

Despite the theoretical strengths of Diffusion Policy, our
practical deployment revealed several critical challenges. We
hypothesize that these limitations primarily stem from two
key factors: the limited diversity in our training data (only
40 trajectories) and the constrained workspace imposed by
the Franka robot’s safety boundaries. Below, we outline the
major challenges encountered



A. No Obvious Feedback or Replanning Mechanism

The Diffusion Policy executes a precomputed sequence
of actions based solely on the initial observation, with-
out incorporating any real-time corrective feedback. In our
constrained setup, where small pose shifts or execution
errors frequently occurred, this open-loop behavior led to
poor adaptability. Once the pushing motion diverged from
expectation, the policy was unable to recover, often resulting
in missed or ineffective pushes.

B. Lack of Robustness to Pose Variations

The small dataset and limited workspace variation made
it difficult for the policy to learn invariances to object pose
changes. As a result, small perturbations in the block’s initial
position or extreme positions near the edge of the workspace
often caused the policy to fail. This suggests that more
diverse demonstrations and randomized initial conditions are
necessary for robust generalization.

Fig. 3: Failure Case of Diffusion Policy. The robot fails to
push the block into the target zone due to misalignment in
the initial pose and limited adaptability of the trained policy.

C. Limited Generalization Across Environments

The policy struggled when deployed under slightly dif-
ferent lighting conditions or camera viewpoints compared
to those seen during training. This is likely due to the
policy overfitting to a narrow training distribution, which was
collected under tightly controlled environmental conditions.
Since both cameras and lighting remained fixed during col-
lection, the model lacked the exposure needed to generalize
across different visual appearances of the same task.

VIII. CONCLUSION

This paper presented a comparative study between a
vision-based Diffusion Policy and a vanilla model-based
planner for the robotic block pushing task. We implemented
a simple model-based approach using MoveIt, which served
as both a baseline and a data source for training the Diffusion
Policy via demonstrations collected with human intervention.
Our real-world experiments using a Franka Emika Panda arm
demonstrated that the Diffusion Policy achieved a higher
success rate and generalized better than the model-based

baseline, particularly in handling variations in initial block
pose.

Despite its advantages in generalization, the deployed
Diffusion Policy faced significant challenges. Its perfor-
mance, while superior to the basic model-based approach,
was notably less efficient and stable than human teleoperated
demonstrations, often resulting in slow or hesitant motions.
Key limitations identified include the policy’s open-loop
nature, lacking real-time feedback or replanning mechanisms
to correct deviations during execution. Furthermore, its ro-
bustness was constrained by the limited size and diversity
of the training dataset (40 trajectories) and the restricted
workspace, leading to poor generalization to pose variations,
particularly near workspace boundaries or under different
environmental conditions.

In summary, while Diffusion Policy shows promise for
learning complex manipulation skills like block pushing
directly from demonstrations and handling uncertainty better
than simple model-based methods, significant hurdles remain
in achieving robust and efficient real-world performance. Ad-
dressing the challenges related to data limitations, adaptabil-
ity, and generalization is crucial for advancing the practical
applicability of such learning-based approaches in robotics.

IX. FUTURE WORK

While our experiments demonstrate that the Diffusion Pol-
icy significantly outperforms a vanilla model-based planner
in both simulated and real-world block-pushing tasks, its
robustness to out-of-distribution conditions and its ability
to generalize across novel scenarios remain limited. To
address these shortcomings, we propose two complementary
directions for future investigation:

First, building on insights from sim-to-real transfer, we
plan to gradually introduce increasing levels of variabil-
ity—both in simulation and on hardware—during data col-
lection and policy training. By randomizing physical pa-
rameters (e.g., friction coefficients, block mass, lighting
conditions) and visual observations (e.g., camera pose, back-
ground textures) in a curriculum fashion, the policy will learn
invariances to these perturbations. We will systematically
study how the schedule and magnitude of randomization
affect robustness, enabling the policy to remain stable when
faced with distribution shifts at test time.

Second, to further improve the Diffusion Policy’s capac-
ity to handle unseen geometries and push trajectories, we
will expand our dataset to cover a much broader range
of block positions, orientations, shapes (e.g., varying as-
pect ratios), and multi-step push sequences. Automated
data augmentation techniques—such as procedural genera-
tion of target layouts and synthetic variations of recorded
demonstrations—will significantly enlarge the support of the
training distribution. We will measure how this richer data
distribution reduces failure rates on held-out test scenarios
and enables zero-shot generalization to entirely new block
configurations.

In addition to these data-centric strategies, we will
explore algorithmic enhancements—including uncertainty-



aware noise schedules, adversarial perturbations in action
space, and hybrid model-based residual corrections—to fur-
ther stabilize the iterative denoising process and guard
against compounding errors. Together, these future efforts
aim to deliver a Diffusion Policy that is not only effective in
controlled settings but also reliably robust and generalizable
in the face of real-world variability.
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